Lexical Influences on the Perception of Sarcasm

نویسندگان

  • Roger Kreuz
  • Gina Caucci
چکیده

Speakers and listeners make use of a variety of pragmatic factors to produce and identify sarcastic statements. It is also possible that lexical factors play a role, although this possibility has not been investigated previously. College students were asked to read excerpts from published works that originally contained the phrase said sarcastically, although the word sarcastically was deleted. The participants rated the characters’ statements in these excerpts as more likely to be sarcastic than those from similar excerpts that did not originally contain the word sarcastically. The use of interjections, such as gee or gosh, predicted a significant amount of the variance in the participants’ ratings of sarcastic intent. This outcome suggests that sarcastic statements may be more formulaic than previously realized. It also suggests that computer software could be written to recognize such lexical factors, greatly increasing the likelihood that nonliteral intent could be correctly interpreted by such programs, even if they are unable to identify the pragmatic components of nonliteral language.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detecting Sarcasm on Twitter: A Behavior Modeling Approach by Ashwin Rajadesingan A Thesis Presented in Partial Fulfillment of the Requirement for the Degree Master of Science Approved September 2014 by the Graduate Supervisory Committee: Huan Liu, Chair

Sarcasm is a nuanced form of language where usually, the speaker explicitly states the opposite of what is implied. Imbued with intentional ambiguity and subtlety, detecting sarcasm is a difficult task, even for humans. Current works approach this challenging problem primarily from a linguistic perspective, focussing on the lexical and syntactic aspects of sarcasm. In this thesis, I explore the...

متن کامل

Modelling Context with User Embeddings for Sarcasm Detection in Social Media

We introduce a deep neural network for automated sarcasm detection. Recent work has emphasized the need for models to capitalize on contextual features, beyond lexical and syntactic cues present in utterances. For example, different speakers will tend to employ sarcasm regarding different subjects and, thus, sarcasm detection models ought to encode such speaker information. Current methods have...

متن کامل

Who cares about Sarcastic Tweets? Investigating the Impact of Sarcasm on Sentiment Analysis

Sarcasm is a common phenomenon in social media, and is inherently difficult to analyse, not just automatically but often for humans too. It has an important effect on sentiment, but is usually ignored in social media analysis, because it is considered too tricky to handle. While there exist a few systems which can detect sarcasm, almost no work has been carried out on studying the effect that s...

متن کامل

Identifying Sarcasm in Twitter: A Closer Look

Sarcasm transforms the polarity of an apparently positive or negative utterance into its opposite. We report on a method for constructing a corpus of sarcastic Twitter messages in which determination of the sarcasm of each message has been made by its author. We use this reliable corpus to compare sarcastic utterances in Twitter to utterances that express positive or negative attitudes without ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007